数学七年级知识点(通用15篇)
在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。为了帮助大家掌握重要知识点,以下是小编为大家整理的数学七年级知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学七年级知识点1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式)
1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。
(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
2、多项式
(1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:
把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:
(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符
看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母降幂排列,还是升幂排列。
3、整式:单项式和多项式统称为整式。
4、列代数式的几个注意事项
(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;
(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。
初中数学实数知识点
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
初中提高数学成绩诀窍
数学不能只依靠上课听得懂
很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。
初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。
只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。
三个重要的数学思想
1、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。
2、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。
3、对应的思想。
初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。
数学七年级知识点2科学记数法:一个大于10的数可以表示成Ax10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力, ……此处隐藏20503个字……受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
数学七年级学习技巧
初中数学的快速记忆法之歌诀记忆
就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。
数学七年级知识点141、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a—p==
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a—b)=
完全平方公式:(a+b)2(a—b)2
常用公式:(x+m)(x+n)=
4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余角和互为补角和
6、两直线平行的条件:(角的关系线的平行)
①相等,两直线平行;
②相等,两直线平行;
③互补,两直线平行。
7、平行线的性质:两直线平行。(线的平行
8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
9、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。
10、三角形
(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:
(7)等边三角形:
11、会判轴对称图形,会根据画对称图形,(或在方格中画)
12、常见的轴对称图形有:
13、(1)等腰三角形:对称轴,性质
(2)线段:对称轴,性质
(3)角:对称轴,性质
14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线
(4)作角的平分线(5)作三角形
15、事件的分类:,会求各种事件的概率
(1)摸球:P(摸某种球)=
(2)摸牌:P(摸某种牌)=
(3)转盘:P(指向某个区域)=
(4)抛骰子:P(抛出某个点数)=
(5)方格(面积):P(停留某个区域)=
16、必然事件不可能事件,不确定事件
17、方法归纳:(1)求边相等可以利用
(2)求角相等可以利用。
(3)计算简便可以利用。
18、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
数学七年级知识点15一.整式
※1.单项式
①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.
二.整式的加减
1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三.同底数幂的乘法
※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
四.幂的乘方与积的乘方
※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2..
※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同.
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).
※7.幂的乘方与积乘方法则均可逆向运用.
五.同底数幂的除法
※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
※2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;
文档为doc格式